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1 KKT Conditions

1.1 The Lagrange Dual Function

We consider that

min
x

f0(x),

s.t. fi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l.

Definition 1 We define that Lagrangian L : Rn × Rm × Rl → R is

L(x,λ,ν) := f0(x) +

m∑
i=1

λifi(x) +

l∑
j=1

νjhj(x), (1)

where λ = (λ1, . . . , λm)⊤ and ν = (ν1, . . . , νl)
⊤ are denoted as dual variables or Lagrange multipliers.

Definition 2 Define the Lagrange dual function as

g(λ,ν) = inf
x∈D

L(x,λ,ν), (2)

where D = {∩m
i=0(fi)} ∩ {∩l

j=1(hj)}.

Theorem 1 Let us define that p∗ = minx∈X f0(x), then

g(λ,ν) ≤ p∗

for any λ ⪰ 0.

Proof 1 Suppose that x̄ ∈ X , then
∑m

i=1 λifi(x̄) +
∑l

j=1 νjhj(x̄) ≤ 0. Thus,

g(λ,ν) = inf
x∈D

L(x,λ,ν) ≤ L(x̄,λ,ν)

= f0(x̄) +

m∑
i=1

λifi(x̄) +

l∑
j=1

νjhj(x̄)

≤ f0(x̄),

for all x̄ ∈ X . Therefore, g(λ,ν) ≤ f0(x
∗) = p∗.

Remark 1 • Theorem 1 shows the Lagrange dual function gives a nontrivial lower bound on p∗ only
when λ ⪰ 0 and (λ,ν) ∈ dom(g). We refer to a pair (λ,ν) ∈ dom(g) with λ ⪰ 0 as dual feasible
variables.

1



• g(λ,ν) is always concave.

Definition 3 For each pair (λ,ν) ∈ dom(g) with λ ⪰ 0, the Lagrange dual function gives us a lower bound
of p∗. A natural question is what is the best lower bound that can be obtained from the Lagrange dual function.
This leads to the following optimization problem:

q∗ =max
λ,ν

g(λ,ν), (3)

s.t. λ ⪰ 0. (4)
The previous problem is called Lagrange dual problem and (λ∗,ν∗) are the dual optimal variables or optimal
Lagrange multipliers.

The Lagrange dual problem is a convex optimization since the objective to be maximized is concave and the
constraint is convex, whether or not the primal problem is convex.

Definition 4 Weak Duality: q∗ ≤ p∗.

Strong Duality: q∗ = p∗.

Remark 2 • Weak duality always holds. However, strong duality needs more well conditions.

• Let us discuss the following fact first:

sup
λ⪰0

{f0(x) +
∑
i

λifi(x)} =

{
f0(x), fi(x) ≤ 0, i = 1, . . . ,m

∞, otherwise.

Thus, we have
p∗ = inf

x
sup
λ⪰0

L(x,λ),

q∗ = sup
λ⪰0

inf
x

L(x,λ).

Therefore, the weak duality implies that
sup
λ⪰0

inf
x

L(x,λ) ≤ inf
x

sup
λ⪰0

L(x,λ).

1.2 Benefit of Strong Duality

Theorem 2 Suppose that x∗ and (λ∗,ν∗) are the primal and dual solution of optimization problem of (??),
and strong duality holds. Then we have the following two facts:

•
∑

i λ
∗
i fi(x

∗) = 0. That is λ∗
i > 0,=⇒ fi(x

∗) = 0 or fi(x
∗) < 0,=⇒ λ∗

i = 0. This is also called
“complementary slackness.”

• x∗ is the minimizer of L(x,λ∗,ν∗), that is

∇f0(x
∗) +

∑
i

λ∗
i∇fi(x

∗) +
∑
j

ν∗j∇hj(x
∗) = 0.

Proof 2 Due to the strong duality, then

p∗ = f0(x
∗) = q∗ = inf

x∈D

f0(x) +
∑
i

λ∗
i fi(x) +

∑
j

ν∗j hj(x)


≤ f0(x

∗) +
∑
i

λ∗
i fi(x

∗) +
∑
j

ν∗j hj(x
∗)

≤ f0(x
∗).
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This implies ∑
i

λ∗
i fi(x

∗) = 0

and x∗ is the minimizer of L(x,λ∗,ν∗). In addition,

∇L(x∗,λ∗,ν∗) = 0 =⇒ ∇f0(x
∗) +

∑
i

λ∗
i∇fi(x

∗) +
∑
j

ν∗j∇hj(x
∗) = 0.

Under strong duality, given a dual solution (λ∗,ν∗) any primal solution x∗ solves

min
x

f0(x) +
∑
i

λ∗
i fi(x) +

∑
j

ν∗j hj(x).

This means that we only need to solve an unconstrained problem we have familiar with them.

1.3 Karush-Kuhn-Tucker Conditions

• First appeared in publication by Kuhn and Tucker 1951.

• Later people found out that Karush had the condition in his unpublished master’s thesis of 1939.

• Finally, it is called the Karush-Kuhn-Tucker conditions.

Theorem 3 (KKT Optimality Conditions) Let x∗ and (λ∗,ν∗) be the primal and dual optimal points with
zero dual gap, then the following KKT conditions hold:

∇f0(x
∗) +

∑
i

λ∗
i∇fi(x

∗) +
∑
j

ν∗j∇hj(x
∗) = 0 (stationary point), (5)

fi(x
∗) ≤ 0, (primal feasible) (6)

hj(x
∗) = 0, (primal feasible) (7)

λ∗
i fi(x

∗) = 0, (complementary slackness) (8)
λi ≥ 0, (dual feasible) (9)

where i = 1, . . . ,m and j = 1, . . . , l.

Proof 3 Combing the primal and dual feasible conditions and results of Theorem 2, we can justify the KKT
optimality conditions.

Next, let us show some insightful examples

Example 1 For the unconstrained optimization, KKT optmality conditions say: ∇f(x∗) = 0.

Example 2 Let us consider the following general convex optimization with linear equality constrains.

min
x

f(x), (10)

s.t. Ax = b. (11)

Based on the KKT optimality conditions, we have

{
Ax∗ = b,

∇f(x∗) +A⊤λ∗ = 0.
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Recall that we have obtain these conditions by the general optimality conditions

⟨∇f(x∗),y − x⟩ ≥ 0

in the previous example.

Example 3

min
x

f0(x),

s.t. x ⪰ 0.

The Lagrangian: L(x,λ) = f0(x)− λ⊤x. Then, the KKT conditions:

∇f0(x
∗)− λ∗ = 0,

x∗ ⪰ 0,

λ∗ ⪰ 0,

λ∗
i x

∗
i = 0.

Thus, (∇f0(x
∗))i = λ∗

i . Finally, we have the optimality condition for x∗ as

(∇f0(x
∗))ix

∗
i = 0,

∇f0(x
∗) ⪰ 0,

x∗ ⪰ 0.

Theorem 3 shows the necessary condition of primal and dual optimal points which should satisfy. What
about sufficient conditions?

Theorem 4 Suppose that primal problem is convex, (x∗,λ∗,ν∗) are any points that satisfies the KKT
conditions, then x∗ and (λ∗,ν∗) are primal and dual optimal with zero dual gap.

Proof 4 KKT conditions tell us that x∗ is primally feasible, namely fi(x
∗) ≤ 0 and hj(x

∗) = 0. Since
λ∗ ⪰ 0, then L(x,λ∗,ν∗) is convex in x. Thus, the condition ∇f0(x

∗)+
∑

i λ
∗
i∇fi(x

∗)+
∑

j ν
∗
j∇hj(x

∗) = 0
indicates x∗ minimizes L(x,λ∗,ν∗) over x. Therefor,

g(λ∗,ν∗) = L(x∗,λ∗,ν∗) = f0(x
∗) +

∑
i

λ∗
i fi(x

∗) +
∑
j

ν∗j hj(x
∗) = f0(x

∗).

This means the zero dual gap. Obviously, (x∗,λ∗,ν∗) are primal and dual optimal points.

Example 4

min
x

f(x) =
1

2
x⊤Px+ q⊤x+ r,

s.t. Ax = b,

where P ≻ 0. We know that this is a convex problem and its KKT conditions are

{
Ax∗ = b,

Px∗ + q +A⊤λ∗ = 0.

Based on Theorem 4, solving the so-called “KKT-system” can obtain the optimal solution.
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Example 5 (Support Vector Machine)

Given a data set {(xi, yi)|xi ∈ Rd, yi ∈ {−1, 1}, i = 1, . . . , n}, how to construct a linear classifier if the data
set is separable?

The basic idea is that we can use Separation Hyperplane Theorem to construct the classifier.

Recall that

Theorem 5 Suppose that there are two convex sets C and D satisfies C ∩D = ∅. Then there exists a ̸= 0
and b such that

a⊤x− b ≤ 0 for any x ∈ C, and a⊤x− b ≥ 0 for any x ∈ D. (12)

Proof 5 Let p, q be the two pints which achieve

min
x∈C,y∈D

∥x− y∥ = ∥p− q∥.

Then the hyperplan separates C and D is

⟨p− q,x− p+ q

2
⟩ = 0,

that is
⟨p− q,x⟩ − 1

2
⟨p− q, p+ q⟩ = 0.

Thus, a = p− q and b = 1
2 ⟨p− q, p+ q⟩.

Let us go back to the SVM example. According to the hyperplane separation theorem, we can construct the
linear classifier by the following three steps:

• Step 1: Construct a positive and negtive convex hull

C+ = {x|x =
∑
yi=1

αixi,
∑
yi=1

αi = 1, 0 ≤ αi ≤ 1},

C− = {x|x =
∑

yi=−1

αixi,
∑

yi=−1

αi = 1, 0 ≤ αi ≤ 1}.

• Step 2: Find p and q for C+ and C−.

• Step 3: set a = p− q and b = 1
2 ⟨p− q, p+ q⟩, we have the linear classifier y = a⊤x+ b.

Q: How to find p and q? To this end, we need to find the optimal solution of the following optimization
problem:

min
α,β

1

2
∥
∑
yi=1

αixi −
∑

yi=−1

βixi∥2,

s.t.
∑
yi=1

αi = 1, 0 ≤ αi ≤ 1,

∑
yi=−1

βi = 1, 0 ≤ βi ≤ 1.

However, finding the optimal solution of the above optimization problem is relatively hard. Then in the
machine learning community, another method called “maximal margin” approach that has been widely used
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Figure 1: Support Vector Machine

to find the “optimal” linear classifier. The fundamental idea is to find two parallel hyperplanes (see Figure
1) which can separate the positive and negative point set with the maximal distance (margin).

With loss of generality, assume that the two parallel hyperplanes are ⟨w,x⟩ + b = 1 and ⟨w,x⟩ + b = −1.
Then the maximal margin means

max
w,b

d =
2

∥w∥
, (13)

s.t. yi(⟨w,xi⟩+ b) ≥ 1, i = 1, . . . , n. (14)

It is equivalent to

min
w,b

1

2
∥w∥2, (15)

s.t. yi(⟨w,xi⟩+ b) ≥ 1, i = 1, . . . , n. (16)

Lagrangian:

L(w, b, α) =
∥w∥2

2
−

∑
i

αi[yi(⟨w,xi⟩+ b)− 1].

KKT conditions:

∇wL(w, b, α) = w −
∑
i

αiyixi = 0, (17)

∇bL(w, b, α) = −
∑
i

αiyi = 0, (18)

αi ≥ 0, (19)
yi(⟨w,xi⟩+ b) ≥ 1, (20)

αi[yi(⟨w,xi⟩+ b)− 1] = 0. (21)

So, it has w∗ =
∑

i α
∗
i yixi, then the linear classifier is y = ⟨w∗,x⟩+b∗ =

∑
i α

∗
i yi⟨xi,x⟩+b∗. The point xi is

called the support point due to αi ̸= 0. αi ̸= 0 also indicates that point i lies on the support hyperplane.
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Take w∗ =
∑

i α
∗
i yixi into the Lagrangian, we have the Lagrange dual problem:

max
α

− 1

2

∑
i,j

αiαjyiyj⟨xi,xj⟩+
∑
i

αi

s.t. αi ≥ 0,∑
i

αiyi = 0.

The primal and dual problems are convex, and the dual problem is quadratic.

References

7


	KKT Conditions
	The Lagrange Dual Function
	Benefit of Strong Duality
	Karush-Kuhn-Tucker Conditions


